🔎aflplusplus

AFL+++: an open-source fuzz testing tool that uses advanced mutation algorithms, deep learning, and parallel fuzzing to quickly identify vulnerabilities in software.

AFL+++, the advanced version of American Fuzzy Lop (AFL), is a powerful security tool for identifying vulnerabilities in software. It is an open-source software security testing tool that uses fuzz testing to find potential security flaws in code. AFL+++ was created to address the limitations of its predecessor, AFL, and provides an extensive set of features for better test coverage, faster feedback, and improved exploitability detection.

AFL+++ is a highly effective tool for identifying vulnerabilities in software. It works by inputting random data into an application, using various mutation techniques to modify the input data, and analyzing the results to determine if any vulnerabilities exist. AFL+++ provides advanced mutation algorithms, such as MOpt and QEMU mode, which optimize the input data to improve test coverage and reduce the time required for finding bugs.

One of the key features of AFL+++ is its ability to detect and prioritize exploitable bugs. This is done through a unique technique called "deep learning," which involves training the tool on real-world vulnerabilities to better identify them in new code. This helps developers to quickly identify high-risk vulnerabilities and prioritize their remediation efforts accordingly.

AFL+++ also provides a range of other advanced features, including coverage guidance, parallel fuzzing, and crash triage. Coverage guidance helps to ensure maximum code coverage by identifying areas that have not been tested and guiding the fuzzer to those areas. Parallel fuzzing allows multiple instances of AFL+++ to run simultaneously, reducing the time required for testing. Crash triage is a feature that helps to quickly identify the root cause of a crash and provide detailed information about the vulnerability.

Another key advantage of AFL+++ is its ease of use. It is designed to be user-friendly and easy to install, with comprehensive documentation and tutorials to guide users through the testing process. Additionally, AFL+++ supports a wide range of operating systems and architectures, making it a versatile tool for testing a variety of software applications.

In summary, AFL+++ is a powerful security testing tool that provides a range of advanced features for identifying and prioritizing vulnerabilities in software. With its advanced mutation algorithms, deep learning techniques, and range of other features, AFL+++ is an indispensable tool for software developers looking to improve the security of their applications.

Packages and Binaries:

afl

This is a transitional package. It can safely be removed once afl++ is installed.

Installed size: 73 KB How to install: sudo apt install afl

Dependencies:
  • afl++


afl++

American fuzzy lop is a fuzzer that employs compile-time instrumentation and genetic algorithms to automatically discover clean, interesting test cases that trigger new internal states in the targeted binary. This substantially improves the functional coverage for the fuzzed code. The compact synthesized corpora produced by the tool are also useful for seeding other, more labor- or resource-intensive testing regimes down the road.

afl++-fuzz is designed to be practical: it has modest performance overhead, uses a variety of highly effective fuzzing strategies, requires essentially no configuration, and seamlessly handles complex, real-world use cases - say, common image parsing or file compression libraries.

afl++ is a fork of the unmaintained afl.

Installed size: 2.29 MB How to install: sudo apt install afl++

Dependencies:
  • build-essential

  • clang

  • clang-14

  • libc6

  • libgcc-s1

  • libpython3.11

  • libstdc++6

  • procps

afl-analyze

(unknown subject)

:~# afl-analyze -h
afl-analyze++4.04c by Michal Zalewski

afl-analyze [ options ] -- /path/to/target_app [ ... ]

Required parameters:
  -i file       - input test case to be analyzed by the tool

Execution control settings:
  -f file       - input file read by the tested program (stdin)
  -t msec       - timeout for each run (1000 ms)
  -m megs       - memory limit for child process (0 MB)
  -O            - use binary-only instrumentation (FRIDA mode)
  -Q            - use binary-only instrumentation (QEMU mode)
  -U            - use unicorn-based instrumentation (Unicorn mode)
  -W            - use qemu-based instrumentation with Wine (Wine mode)

Analysis settings:
  -e            - look for edge coverage only, ignore hit counts

For additional tips, please consult /usr/share/doc/afl/README.md.

Environment variables used:
TMPDIR: directory to use for temporary input files
ASAN_OPTIONS: custom settings for ASAN
              (must contain abort_on_error=1 and symbolize=0)
MSAN_OPTIONS: custom settings for MSAN
              (must contain exitcode=86 and symbolize=0)
AFL_ANALYZE_HEX: print file offsets in hexadecimal instead of decimal
AFL_MAP_SIZE: the shared memory size for that target. must be >= the size
              the target was compiled for
AFL_PRELOAD: LD_PRELOAD / DYLD_INSERT_LIBRARIES settings for target
AFL_SKIP_BIN_CHECK: skip checking the location of and the target

afl-c++

Afl-c++ (8) - afl-cc++4.04c by Michal Zalewski, Laszlo Szekeres, Marc Heuse afl-cc

:~# afl-c++ --help
OVERVIEW: clang LLVM compiler

USAGE: clang [options] file...

OPTIONS:
  -###                    Print (but do not run) the commands to run for this compilation
  --amdgpu-arch-tool=<value>
                          Tool used for detecting AMD GPU arch in the system.
  --analyzer-output <value>
                          Static analyzer report output format (html|plist|plist-multi-file|plist-html|sarif|sarif-html|text).
  --analyze               Run the static analyzer
  -arcmt-migrate-emit-errors
                          Emit ARC errors even if the migrator can fix them
  -arcmt-migrate-report-output <value>
                          Output path for the plist report
  -B <prefix>             Search $prefix$file for executables, libraries, and data files. If $prefix is a directory, search $prefix/$file
  -b <arg>                Pass -b <arg> to the linker on AIX (only).
  -CC                     Include comments from within macros in preprocessed output
  -cl-denorms-are-zero    OpenCL only. Allow denormals to be flushed to zero.
  -cl-fast-relaxed-math   OpenCL only. Sets -cl-finite-math-only and -cl-unsafe-math-optimizations, and defines __FAST_RELAXED_MATH__.
  -cl-finite-math-only    OpenCL only. Allow floating-point optimizations that assume arguments and results are not NaNs or +-Inf.
  -cl-fp32-correctly-rounded-divide-sqrt
                          OpenCL only. Specify that single precision floating-point divide and sqrt used in the program source are correctly rounded.
  -cl-kernel-arg-info     OpenCL only. Generate kernel argument metadata.
  -cl-mad-enable          OpenCL only. Allow use of less precise MAD computations in the generated binary.
  -cl-no-signed-zeros     OpenCL only. Allow use of less precise no signed zeros computations in the generated binary.
  -cl-no-stdinc           OpenCL only. Disables all standard includes containing non-native compiler types and functions.
  -cl-opt-disable         OpenCL only. This option disables all optimizations. By default optimizations are enabled.
  -cl-single-precision-constant
                          OpenCL only. Treat double precision floating-point constant as single precision constant.
  -cl-std=<value>         OpenCL language standard to compile for.
  -cl-strict-aliasing     OpenCL only. This option is added for compatibility with OpenCL 1.0.
  -cl-uniform-work-group-size
                          OpenCL only. Defines that the global work-size be a multiple of the work-group size specified to clEnqueueNDRangeKernel
  -cl-unsafe-math-optimizations
                          OpenCL only. Allow unsafe floating-point optimizations.  Also implies -cl-no-signed-zeros and -cl-mad-enable.
  --config <value>        Specifies configuration file
  --cuda-compile-host-device
                          Compile CUDA code for both host and device (default).  Has no effect on non-CUDA compilations.
  --cuda-device-only      Compile CUDA code for device only
  --cuda-host-only        Compile CUDA code for host only.  Has no effect on non-CUDA compilations.
  --cuda-include-ptx=<value>
                          Include PTX for the following GPU architecture (e.g. sm_35) or 'all'. May be specified more than once.
  --cuda-noopt-device-debug
                          Enable device-side debug info generation. Disables ptxas optimizations.
  --cuda-path-ignore-env  Ignore environment variables to detect CUDA installation
  --cuda-path=<value>     CUDA installation path
  -cuid=<value>           An ID for compilation unit, which should be the same for the same compilation unit but different for different compilation units. It is used to externalize device-side static variables for single source offloading languages CUDA and HIP so that they can be accessed by the host code of the same compilation unit.
  -cxx-isystem <directory>
                          Add directory to the C++ SYSTEM include search path
  -C                      Include comments in preprocessed output
  -c                      Only run preprocess, compile, and assemble steps
  -dD                     Print macro definitions in -E mode in addition to normal output
  -dependency-dot <value> Filename to write DOT-formatted header dependencies to
  -dependency-file <value>
                          Filename (or -) to write dependency output to
  -dI                     Print include directives in -E mode in addition to normal output
  -dM                     Print macro definitions in -E mode instead of normal output
  -dsym-dir <dir>         Directory to output dSYM's (if any) to
  -D <macro>=<value>      Define <macro> to <value> (or 1 if <value> omitted)
  -emit-ast               Emit Clang AST files for source inputs
  -emit-interface-stubs   Generate Interface Stub Files.
  -emit-llvm              Use the LLVM representation for assembler and object files
  -emit-merged-ifs        Generate Interface Stub Files, emit merged text not binary.
  --emit-static-lib       Enable linker job to emit a static library.
  -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
                          Trivial automatic variable initialization to zero is only here for benchmarks, it'll eventually be removed, and I'm OK with that because I'm only using it to benchmark
  --end-no-unused-arguments
                          Start emitting warnings for unused driver arguments
  -extract-api            Extract API information
  -E                      Only run the preprocessor
  -faapcs-bitfield-load   Follows the AAPCS standard that all volatile bit-field write generates at least one load. (ARM only).
  -faapcs-bitfield-width  Follow the AAPCS standard requirement stating that volatile bit-field width is dictated by the field container type. (ARM only).
  -faddrsig               Emit an address-significance table
  -falign-loops=<N>       N must be a power of two. Align loops to the boundary
  -faligned-allocation    Enable C++17 aligned allocation functions
  -fallow-editor-placeholders
                          Treat editor placeholders as valid source code
  -faltivec-src-compat=<value>
                          Source-level compatibility for Altivec vectors (for PowerPC targets). This includes results of vector comparison (scalar for 'xl', vector for 'gcc') as well as behavior when initializing with a scalar (splatting for 'xl', element zero only for 'gcc'). For 'mixed', the compatibility is as 'gcc' for 'vector bool/vector pixel' and as 'xl' for other types. Current default is 'mixed'.
  -fansi-escape-codes     Use ANSI escape codes for diagnostics
  -fapple-kext            Use Apple's kernel extensions ABI
  -fapple-link-rtlib      Force linking the clang builtins runtime library
  -fapple-pragma-pack     Enable Apple gcc-compatible #pragma pack handling
  -fapplication-extension Restrict code to those available for App Extensions
  -fapprox-func           Allow certain math function calls to be replaced with an approximately equivalent calculation
  -fasync-exceptions      Enable EH Asynchronous exceptions
  -fbasic-block-sections=<value>
                          Place each function's basic blocks in unique sections (ELF Only) : all | labels | none | list=<file>
  -fbinutils-version=<major.minor>
                          Produced object files can use all ELF features supported by this binutils version and newer. If -fno-integrated-as is specified, the generated assembly will consider GNU as support. 'none' means that all ELF features can be used, regardless of binutils support. Defaults to 2.26.
  -fblocks                Enable the 'blocks' language feature
  -fborland-extensions    Accept non-standard constructs supported by the Borland compiler
  -fbuild-session-file=<file>
                          Use the last modification time of <file> as the build session timestamp
  -fbuild-session-timestamp=<time since Epoch in seconds>
                          Time when the current build session started
  -fbuiltin-module-map    Load the clang builtins module map file.
  -fc++-abi=<value>       C++ ABI to use. This will override the target C++ ABI.
  -fcall-saved-x10        Make the x10 register call-saved (AArch64 only)
  -fcall-saved-x11        Make the x11 register call-saved (AArch64 only)
  -fcall-saved-x12        Make the x12 register call-saved (AArch64 only)
  -fcall-saved-x13        Make the x13 register call-saved (AArch64 only)
  -fcall-saved-x14        Make the x14 register call-saved (AArch64 only)
  -fcall-saved-x15        Make the x15 register call-saved (AArch64 only)
  -fcall-saved-x18        Make the x18 register call-saved (AArch64 only)
  -fcall-saved-x8         Make the x8 register call-saved (AArch64 only)
  -fcall-saved-x9         Make the x9 register call-saved (AArch64 only)
  -fcf-protection=<value> Instrument control-flow architecture protection. Options: return, branch, full, none.
  -fcf-protection         Enable cf-protection in 'full' mode
  -fchar8_t               Enable C++ builtin type char8_t
  -fclang-abi-compat=<version>
                          Attempt to match the ABI of Clang <version>
  -fcolor-diagnostics     Enable colors in diagnostics
  -fcomment-block-commands=<arg>
                          Treat each comma separated argument in <arg> as a documentation comment block command
  -fcommon                Place uninitialized global variables in a common block
  -fcomplete-member-pointers
                          Require member pointer base types to be complete if they would be significant under the Microsoft ABI
  -fconvergent-functions  Assume functions may be convergent
  -fcoroutines-ts         Enable support for the C++ Coroutines TS
  -fcoverage-compilation-dir=<value>
                          The compilation directory to embed in the coverage mapping.
  -fcoverage-mapping      Generate coverage mapping to enable code coverage analysis
  -fcoverage-prefix-map=<value>
                          remap file source paths in coverage mapping
  -fcrash-diagnostics-dir=<dir>
                          Put crash-report files in <dir>
  -fcs-profile-generate=<directory>
                          Generate instrumented code to collect context sensitive execution counts into <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)
  -fcs-profile-generate   Generate instrumented code to collect context sensitive execution counts into default.profraw (overridden by LLVM_PROFILE_FILE env var)
  -fcuda-approx-transcendentals
                          Use approximate transcendental functions
  -fcuda-short-ptr        Use 32-bit pointers for accessing const/local/shared address spaces
  -fcxx-exceptions        Enable C++ exceptions
  -fcxx-modules           Enable modules for C++
  -fdata-sections         Place each data in its own section
  -fdebug-compilation-dir=<value>
                          The compilation directory to embed in the debug info
  -fdebug-default-version=<value>
                          Default DWARF version to use, if a -g option caused DWARF debug info to be produced
  -fdebug-info-for-profiling
                          Emit extra debug info to make sample profile more accurate
  -fdebug-macro           Emit macro debug information
  -fdebug-prefix-map=<value>
                          remap file source paths in debug info
  -fdebug-ranges-base-address
                          Use DWARF base address selection entries in .debug_ranges
  -fdebug-types-section   Place debug types in their own section (ELF Only)
  -fdeclspec              Allow __declspec as a keyword
  -fdelayed-template-parsing
                          Parse templated function definitions at the end of the translation unit
  -fdelete-null-pointer-checks
                          Treat usage of null pointers as undefined behavior (default)
  -fdiagnostics-absolute-paths
                          Print absolute paths in diagnostics
  -fdiagnostics-hotness-threshold=<value>
                          Prevent optimization remarks from being output if they do not have at least this profile count. Use 'auto' to apply the threshold from profile summary
  -fdiagnostics-parseable-fixits
                          Print fix-its in machine parseable form
  -fdiagnostics-print-source-range-info
                          Print source range spans in numeric form
  -fdiagnostics-show-hotness
                          Enable profile hotness information in diagnostic line
  -fdiagnostics-show-note-include-stack
                          Display include stacks for diagnostic notes
  -fdiagnostics-show-option
                          Print option name with mappable diagnostics
  -fdiagnostics-show-template-tree
                          Print a template comparison tree for differing templates
  -fdigraphs              Enable alternative token representations '<:', ':>', '<%', '%>', '%:', '%:%:' (default)
  -fdirect-access-external-data
                          Don't use GOT indirection to reference external data symbols
  -fdiscard-value-names   Discard value names in LLVM IR
  -fdollars-in-identifiers
                          Allow '$' in identifiers
  -fdouble-square-bracket-attributes
                          Enable '[[]]' attributes in all C and C++ language modes
  -fdwarf-exceptions      Use DWARF style exceptions
  -feliminate-unused-debug-types
                          Do not emit  debug info for defined but unused types
  -fembed-bitcode-marker  Embed placeholder LLVM IR data as a marker
  -fembed-bitcode=<option>
                          Embed LLVM bitcode (option: off, all, bitcode, marker)
  -fembed-bitcode         Embed LLVM IR bitcode as data
  -fembed-offload-object=<value>
                          Embed Offloading device-side binary into host object file as a section.
  -femit-all-decls        Emit all declarations, even if unused
  -femulated-tls          Use emutls functions to access thread_local variables
  -fenable-matrix         Enable matrix data type and related builtin functions
  -fexceptions            Enable support for exception handling
  -fexperimental-new-constant-interpreter
                          Enable the experimental new constant interpreter
  -fexperimental-relative-c++-abi-vtables
                          Use the experimental C++ class ABI for classes with virtual tables
  -fexperimental-strict-floating-point
                          Enables experimental strict floating point in LLVM.
  -fextend-arguments=<value>
                          Controls how scalar integer arguments are extended in calls to unprototyped and varargs functions
  -ffast-math             Allow aggressive, lossy floating-point optimizations
  -ffile-compilation-dir=<value>
                          The compilation directory to embed in the debug info and coverage mapping.
  -ffile-prefix-map=<value>
                          remap file source paths in debug info, predefined preprocessor macros and __builtin_FILE()
  -ffine-grained-bitfield-accesses
                          Use separate accesses for consecutive bitfield runs with legal widths and alignments.
  -ffinite-loops          Assume all loops are finite.
  -ffixed-a0              Reserve the a0 register (M68k only)
  -ffixed-a1              Reserve the a1 register (M68k only)
  -ffixed-a2              Reserve the a2 register (M68k only)
  -ffixed-a3              Reserve the a3 register (M68k only)
  -ffixed-a4              Reserve the a4 register (M68k only)
  -ffixed-a5              Reserve the a5 register (M68k only)
  -ffixed-a6              Reserve the a6 register (M68k only)
  -ffixed-d0              Reserve the d0 register (M68k only)
  -ffixed-d1              Reserve the d1 register (M68k only)
  -ffixed-d2              Reserve the d2 register (M68k only)
  -ffixed-d3              Reserve the d3 register (M68k only)
  -ffixed-d4              Reserve the d4 register (M68k only)
  -ffixed-d5              Reserve the d5 register (M68k only)
  -ffixed-d6              Reserve the d6 register (M68k only)
  -ffixed-d7              Reserve the d7 register (M68k only)
  -ffixed-point           Enable fixed point types
  -ffixed-r19             Reserve register r19 (Hexagon only)
  -ffixed-r9              Reserve the r9 register (ARM only)
  -ffixed-x10             Reserve the x10 register (AArch64/RISC-V only)
  -ffixed-x11             Reserve the x11 register (AArch64/RISC-V only)
  -ffixed-x12             Reserve the x12 register (AArch64/RISC-V only)
  -ffixed-x13             Reserve the x13 register (AArch64/RISC-V only)
  -ffixed-x14             Reserve the x14 register (AArch64/RISC-V only)
  -ffixed-x15             Reserve the x15 register (AArch64/RISC-V only)
  -ffixed-x16             Reserve the x16 register (AArch64/RISC-V only)
  -ffixed-x17             Reserve the x17 register (AArch64/RISC-V only)
  -ffixed-x18             Reserve the x18 register (AArch64/RISC-V only)
  -ffixed-x19             Reserve the x19 register (AArch64/RISC-V only)
  -ffixed-x1              Reserve the x1 register (AArch64/RISC-V only)
  -ffixed-x20             Reserve the x20 register (AArch64/RISC-V only)
  -ffixed-x21             Reserve the x21 register (AArch64/RISC-V only)
  -ffixed-x22             Reserve the x22 register (AArch64/RISC-V only)
  -ffixed-x23             Reserve the x23 register (AArch64/RISC-V only)
  -ffixed-x24             Reserve the x24 register (AArch64/RISC-V only)
  -ffixed-x25             Reserve the x25 register (AArch64/RISC-V only)
  -ffixed-x26             Reserve the x26 register (AArch64/RISC-V only)
  -ffixed-x27             Reserve the x27 register (AArch64/RISC-V only)
  -ffixed-x28             Reserve the x28 register (AArch64/RISC-V only)
  -ffixed-x29             Reserve the x29 register (AArch64/RISC-V only)
  -ffixed-x2              Reserve the x2 register (AArch64/RISC-V only)
  -ffixed-x30             Reserve the x30 register (AArch64/RISC-V only)
  -ffixed-x31             Reserve the x31 register (AArch64/RISC-V only)
  -ffixed-x3              Reserve the x3 register (AArch64/RISC-V only)
  -ffixed-x4              Reserve the x4 register (AArch64/RISC-V only)
  -ffixed-x5              Reserve the x5 register (AArch64/RISC-V only)
  -ffixed-x6              Reserve the x6 register (AArch64/RISC-V only)
  -ffixed-x7              Reserve the x7 register (AArch64/RISC-V only)
  -ffixed-x8              Reserve the x8 register (AArch64/RISC-V only)
  -ffixed-x9              Reserve the x9 register (AArch64/RISC-V only)
  -fforce-dwarf-frame     Always emit a debug frame section
  -fforce-emit-vtables    Emits more virtual tables to improve devirtualization
  -fforce-enable-int128   Enable support for int128_t type
  -ffp-contract=<value>   Form fused FP ops (e.g. FMAs): fast (fuses across statements disregarding pragmas) | on (only fuses in the same statement unless dictated by pragmas) | off (never fuses) | fast-honor-pragmas (fuses across statements unless diectated by pragmas). Default is 'fast' for CUDA, 'fast-honor-pragmas' for HIP, and 'on' otherwise.
  -ffp-exception-behavior=<value>
                          Specifies the exception behavior of floating-point operations.
  -ffp-model=<value>      Controls the semantics of floating-point calculations.
  -ffreestanding          Assert that the compilation takes place in a freestanding environment
  -ffuchsia-api-level=<value>
                          Set Fuchsia API level
  -ffunction-sections     Place each function in its own section
  -fglobal-isel           Enables the global instruction selector
  -fgnu-keywords          Allow GNU-extension keywords regardless of language standard
  -fgnu-runtime           Generate output compatible with the standard GNU Objective-C runtime
  -fgnu89-inline          Use the gnu89 inline semantics
  -fgnuc-version=<value>  Sets various macros to claim compatibility with the given GCC version (default is 4.2.1)
  -fgpu-allow-device-init Allow device side init function in HIP (experimental)
  -fgpu-defer-diag        Defer host/device related diagnostic messages for CUDA/HIP
  -fgpu-flush-denormals-to-zero
                          Flush denormal floating point values to zero in CUDA/HIP device mode.
  -fgpu-rdc               Generate relocatable device code, also known as separate compilation mode
  -fgpu-sanitize          Enable sanitizer for AMDGPU target
  -fhip-fp32-correctly-rounded-divide-sqrt
                          Specify that single precision floating-point divide and sqrt used in the program source are correctly rounded (HIP device compilation only)
  -fhip-new-launch-api    Use new kernel launching API for HIP
  -fignore-exceptions     Enable support for ignoring exception handling constructs
  -fimplicit-module-maps  Implicitly search the file system for module map files.
  -finline-functions      Inline suitable functions
  -finline-hint-functions Inline functions which are (explicitly or implicitly) marked inline
  -finput-charset=<value> Specify the default character set for source files
  -finstrument-function-entry-bare
                          Instrument function entry only, after inlining, without arguments to the instrumentation call
  -finstrument-functions-after-inlining
                          Like -finstrument-functions, but insert the calls after inlining
  -finstrument-functions  Generate calls to instrument function entry and exit
  -fintegrated-as         Enable the integrated assembler
  -fintegrated-cc1        Run cc1 in-process
  -fjump-tables           Use jump tables for lowering switches
  -fkeep-static-consts    Keep static const variables if unused
  -flax-vector-conversions=<value>
                          Enable implicit vector bit-casts
  -flegacy-pass-manager   Use the legacy pass manager in LLVM (deprecated, to be removed in a future release)
  -flto-jobs=<value>      Controls the backend parallelism of -flto=thin (default of 0 means the number of threads will be derived from the number of CPUs detected)
  -flto=auto              Enable LTO in 'full' mode
  -flto=jobserver         Enable LTO in 'full' mode
  -flto=<value>           Set LTO mode to either 'full' or 'thin'
  -flto                   Enable LTO in 'full' mode
  -fmacro-prefix-map=<value>
                          remap file source paths in predefined preprocessor macros and __builtin_FILE()
  -fmath-errno            Require math functions to indicate errors by setting errno
  -fmax-tokens=<value>    Max total number of preprocessed tokens for -Wmax-tokens.
  -fmax-type-align=<value>
                          Specify the maximum alignment to enforce on pointers lacking an explicit alignment
  -fmemory-profile=<directory>
                          Enable heap memory profiling and dump results into <directory>
  -fmemory-profile        Enable heap memory profiling
  -fmerge-all-constants   Allow merging of constants
  -fmessage-length=<value>
                          Format message diagnostics so that they fit within N columns
  -fminimize-whitespace   Minimize whitespace when emitting preprocessor output
  -fmodule-file=[<name>=]<file>
                          Specify the mapping of module name to precompiled module file, or load a module file if name is omitted.
  -fmodule-map-file=<file>
                          Load this module map file
  -fmodule-name=<name>    Specify the name of the module to build
  -fmodules-cache-path=<directory>
                          Specify the module cache path
  -fmodules-decluse       Require declaration of modules used within a module
  -fmodules-disable-diagnostic-validation
                          Disable validation of the diagnostic options when loading the module
  -fmodules-ignore-macro=<value>
                          Ignore the definition of the given macro when building and loading modules
  -fmodules-prune-after=<seconds>
                          Specify the interval (in seconds) after which a module file will be considered unused
  -fmodules-prune-interval=<seconds>
                          Specify the interval (in seconds) between attempts to prune the module cache
  -fmodules-search-all    Search even non-imported modules to resolve references
  -fmodules-strict-decluse
                          Like -fmodules-decluse but requires all headers to be in modules
  -fmodules-ts            Enable support for the C++ Modules TS
  -fmodules-user-build-path <directory>
                          Specify the module user build path
  -fmodules-validate-input-files-content
                          Validate PCM input files based on content if mtime differs
  -fmodules-validate-once-per-build-session
                          Don't verify input files for the modules if the module has been successfully validated or loaded during this build session
  -fmodules-validate-system-headers
                          Validate the system headers that a module depends on when loading the module
  -fmodules               Enable the 'modules' language feature
  -fms-compatibility-version=<value>
                          Dot-separated value representing the Microsoft compiler version number to report in _MSC_VER (0 = don't define it (default))
  -fms-compatibility      Enable full Microsoft Visual C++ compatibility
  -fms-extensions         Accept some non-standard constructs supported by the Microsoft compiler
  -fms-hotpatch           Ensure that all functions can be hotpatched at runtime
  -fmsc-version=<value>   Microsoft compiler version number to report in _MSC_VER (0 = don't define it (default))
  -fnew-alignment=<align> Specifies the largest alignment guaranteed by '::operator new(size_t)'
  -fnew-infallible        Enable treating throwing global C++ operator new as always returning valid memory (annotates with __attribute__((returns_nonnull)) and throw()). This is detectable in source.
  -fno-aapcs-bitfield-width
                          Do not follow the AAPCS standard requirement stating that volatile bit-field width is dictated by the field container type. (ARM only).
  -fno-access-control     Disable C++ access control
  -fno-addrsig            Don't emit an address-significance table
  -fno-assume-sane-operator-new
                          Don't assume that C++'s global operator new can't alias any pointer
  -fno-autolink           Disable generation of linker directives for automatic library linking
  -fno-builtin-<value>    Disable implicit builtin knowledge of a specific function
  -fno-builtin            Disable implicit builtin knowledge of functions
  -fno-c++-static-destructors
                          Disable C++ static destructor registration
  -fno-char8_t            Disable C++ builtin type char8_t
  -fno-color-diagnostics  Disable colors in diagnostics
  -fno-common             Compile common globals like normal definitions
  -fno-complete-member-pointers
                          Do not require member pointer base types to be complete if they would be significant under the Microsoft ABI
  -fno-constant-cfstrings Disable creation of CodeFoundation-type constant strings
  -fno-coverage-mapping   Disable code coverage analysis
  -fno-crash-diagnostics  Disable auto-generation of preprocessed source files and a script for reproduction during a clang crash
  -fno-cuda-approx-transcendentals
                          Don't use approximate transcendental functions
  -fno-cxx-modules        Disable modules for C++
  -fno-debug-macro        Do not emit macro debug information
  -fno-declspec           Disallow __declspec as a keyword
  -fno-delayed-template-parsing
                          Disable delayed template parsing
  -fno-delete-null-pointer-checks
                          Do not treat usage of null pointers as undefined behavior
  -fno-diagnostics-fixit-info
                          Do not include fixit information in diagnostics
  -fno-digraphs           Disallow alternative token representations '<:', ':>', '<%', '%>', '%:', '%:%:'
  -fno-direct-access-external-data
                          Use GOT indirection to reference external data symbols
  -fno-discard-value-names
                          Do not discard value names in LLVM IR
  -fno-dollars-in-identifiers
                          Disallow '$' in identifiers
  -fno-double-square-bracket-attributes
                          Disable '[[]]' attributes in all C and C++ language modes
  -fno-elide-constructors Disable C++ copy constructor elision
  -fno-elide-type         Do not elide types when printing diagnostics
  -fno-eliminate-unused-debug-types
                          Emit  debug info for defined but unused types
  -fno-exceptions         Disable support for exception handling
  -fno-experimental-relative-c++-abi-vtables
                          Do not use the experimental C++ class ABI for classes with virtual tables
  -fno-fine-grained-bitfield-accesses
                          Use large-integer access for consecutive bitfield runs.
  -fno-finite-loops       Do not assume that any loop is finite.
  -fno-fixed-point        Disable fixed point types
  -fno-force-enable-int128
                          Disable support for int128_t type
  -fno-global-isel        Disables the global instruction selector
  -fno-gnu-inline-asm     Disable GNU style inline asm
  -fno-gpu-allow-device-init
                          Don't allow device side init function in HIP (experimental)
  -fno-gpu-defer-diag     Don't defer host/device related diagnostic messages for CUDA/HIP
  -fno-hip-fp32-correctly-rounded-divide-sqrt
                          Don't specify that single precision floating-point divide and sqrt used in the program source are correctly rounded (HIP device compilation only)
  -fno-hip-new-launch-api Don't use new kernel launching API for HIP
  -fno-integrated-as      Disable the integrated assembler
  -fno-integrated-cc1     Spawn a separate process for each cc1
  -fno-jump-tables        Do not use jump tables for lowering switches
  -fno-keep-static-consts Don't keep static const variables if unused
  -fno-legacy-pass-manager
                          Use the new pass manager in LLVM
  -fno-lto                Disable LTO mode (default)
  -fno-memory-profile     Disable heap memory profiling
  -fno-merge-all-constants
                          Disallow merging of constants
  -fno-new-infallible     Disable treating throwing global C++ operator new as always returning valid memory (annotates with __attribute__((returns_nonnull)) and throw()). This is detectable in source.
  -fno-objc-infer-related-result-type
                          do not infer Objective-C related result type based on method family
  -fno-offload-lto        Disable LTO mode (default) for offload compilation
  -fno-openmp-extensions  Disable all Clang extensions for OpenMP directives and clauses
  -fno-operator-names     Do not treat C++ operator name keywords as synonyms for operators
  -fno-pch-codegen        Do not generate code for uses of this PCH that assumes an explicit object file will be built for the PCH
  -fno-pch-debuginfo      Do not generate debug info for types in an object file built from this PCH and do not generate them elsewhere
  -fno-plt                Use GOT indirection instead of PLT to make external function calls (x86 only)
  -fno-preserve-as-comments
                          Do not preserve comments in inline assembly
  -fno-profile-generate   Disable generation of profile instrumentation.
  -fno-profile-instr-generate
                          Disable generation of profile instrumentation.
  -fno-profile-instr-use  Disable using instrumentation data for profile-guided optimization
  -fno-pseudo-probe-for-profiling
                          Do not emit pseudo probes for sample profiling
  -fno-register-global-dtors-with-atexit
                          Don't use atexit or __cxa_atexit to register global destructors
  -fno-rtlib-add-rpath    Do not add -rpath with architecture-specific resource directory to the linker flags
  -fno-rtti-data          Disable generation of RTTI data
  -fno-rtti               Disable generation of rtti information
  -fno-sanitize-address-outline-instrumentation
                          Use default code inlining logic for the address sanitizer
  -fno-sanitize-address-poison-custom-array-cookie
                          Disable poisoning array cookies when using custom operator new[] in AddressSanitizer
  -fno-sanitize-address-use-after-scope
                          Disable use-after-scope detection in AddressSanitizer
  -fno-sanitize-address-use-odr-indicator
                          Disable ODR indicator globals
  -fno-sanitize-cfi-canonical-jump-tables
                          Do not make the jump table addresses canonical in the symbol table
  -fno-sanitize-cfi-cross-dso
                          Disable control flow integrity (CFI) checks for cross-DSO calls.
  -fno-sanitize-coverage=<value>
                          Disable features of coverage instrumentation for Sanitizers
  -fno-sanitize-hwaddress-experimental-aliasing
                          Disable aliasing mode in HWAddressSanitizer
  -fno-sanitize-ignorelist
                          Don't use ignorelist file for sanitizers
  -fno-sanitize-memory-param-retval
                          Disable detection of uninitialized parameters and return values
  -fno-sanitize-memory-track-origins
                          Disable origins tracking in MemorySanitizer
  -fno-sanitize-memory-use-after-dtor
                          Disable use-after-destroy detection in MemorySanitizer
  -fno-sanitize-recover=<value>
                          Disable recovery for specified sanitizers
  -fno-sanitize-stats     Disable sanitizer statistics gathering.
  -fno-sanitize-thread-atomics
                          Disable atomic operations instrumentation in ThreadSanitizer
  -fno-sanitize-thread-func-entry-exit
                          Disable function entry/exit instrumentation in ThreadSanitizer
  -fno-sanitize-thread-memory-access
                          Disable memory access instrumentation in ThreadSanitizer
  -fno-sanitize-trap=<value>
                          Disable trapping for specified sanitizers
  -fno-sanitize-trap      Disable trapping for all sanitizers
  -fno-short-wchar        Force wchar_t to be an unsigned int
  -fno-show-column        Do not include column number on diagnostics
  -fno-show-source-location
                          Do not include source location information with diagnostics
  -fno-signed-char        char is unsigned
  -fno-signed-zeros       Allow optimizations that ignore the sign of floating point zeros
  -fno-spell-checking     Disable spell-checking
  -fno-split-machine-functions
                          Disable late function splitting using profile information (x86 ELF)
  -fno-split-stack        Wouldn't use segmented stack
  -fno-stack-clash-protection
                          Disable stack clash protection
  -fno-stack-protector    Disable the use of stack protectors
  -fno-standalone-debug   Limit debug information produced to reduce size of debug binary
  -fno-strict-float-cast-overflow
                          Relax language rules and try to match the behavior of the target's native float-to-int conversion instructions
  -fno-strict-return      Don't treat control flow paths that fall off the end of a non-void function as unreachable
  -fno-sycl               Disables SYCL kernels compilation for device
  -fno-temp-file          Directly create compilation output files. This may lead to incorrect incremental builds if the compiler crashes
  -fno-threadsafe-statics Do not emit code to make initialization of local statics thread safe
  -fno-trigraphs          Do not process trigraph sequences
  -fno-unique-section-names
                          Don't use unique names for text and data sections
  -fno-unroll-loops       Turn off loop unroller
  -fno-use-cxa-atexit     Don't use __cxa_atexit for calling destructors
  -fno-use-init-array     Use .ctors/.dtors instead of .init_array/.fini_array
  -fno-visibility-inlines-hidden-static-local-var
                          Disables -fvisibility-inlines-hidden-static-local-var (this is the default on non-darwin targets)
  -fno-xray-function-index
                          Omit function index section at the expense of single-function patching performance
  -fno-zero-initialized-in-bss
                          Don't place zero initialized data in BSS
  -fobjc-arc-exceptions   Use EH-safe code when synthesizing retains and releases in -fobjc-arc
  -fobjc-arc              Synthesize retain and release calls for Objective-C pointers
  -fobjc-disable-direct-methods-for-testing
                          Ignore attribute objc_direct so that direct methods can be tested
  -fobjc-encode-cxx-class-template-spec
                          Fully encode c++ class template specialization
  -fobjc-exceptions       Enable Objective-C exceptions
  -fobjc-runtime=<value>  Specify the target Objective-C runtime kind and version
  -fobjc-weak             Enable ARC-style weak references in Objective-C
  -foffload-lto=<value>   Set LTO mode to either 'full' or 'thin' for offload compilation
  -foffload-lto           Enable LTO in 'full' mode for offload compilation
  -fopenmp-extensions     Enable all Clang extensions for OpenMP directives and clauses
  -fopenmp-implicit-rpath Set rpath on OpenMP executables
  -fopenmp-new-driver     Use the new driver for OpenMP offloading.
  -fopenmp-simd           Emit OpenMP code only for SIMD-based constructs.
  -fopenmp-target-debug   Enable debugging in the OpenMP offloading device RTL
  -fopenmp-target-new-runtime
                          Use the new bitcode library for OpenMP offloading
  -fopenmp-targets=<value>
                          Specify comma-separated list of triples OpenMP offloading targets to be supported
  -fopenmp-version=<value>
                          Set OpenMP version (e.g. 45 for OpenMP 4.5, 50 for OpenMP 5.0). Default value is 50.
  -fopenmp                Parse OpenMP pragmas and generate parallel code.
  -foptimization-record-file=<file>
                          Specify the output name of the file containing the optimization remarks. Implies -fsave-optimization-record. On Darwin platforms, this cannot be used with multiple -arch <arch> options.
  -foptimization-record-passes=<regex>
                          Only include passes which match a specified regular expression in the generated optimization record (by default, include all passes)
  -forder-file-instrumentation
                          Generate instrumented code to collect order file into default.profraw file (overridden by '=' form of option or LLVM_PROFILE_FILE env var)
  -fpack-struct=<value>   Specify the default maximum struct packing alignment
  -fpascal-strings        Recognize and construct Pascal-style string literals
  -fpass-plugin=<dsopath> Load pass plugin from a dynamic shared object file (only with new pass manager).
  -fpatchable-function-entry=<N,M>
                          Generate M NOPs before function entry and N-M NOPs after function entry
  -fpcc-struct-return     Override the default ABI to return all structs on the stack
  -fpch-codegen           Generate code for uses of this PCH that assumes an explicit object file will be built for the PCH
  -fpch-debuginfo         Generate debug info for types in an object file built from this PCH and do not generate them elsewhere
  -fpch-instantiate-templates
                          Instantiate templates already while building a PCH
  -fpch-validate-input-files-content
                          Validate PCH input files based on content if mtime differs
  -fplugin-arg-<name>-<arg>
                          Pass <arg> to plugin <name>
  -fplugin=<dsopath>      Load the named plugin (dynamic shared object)
  -fprebuilt-implicit-modules
                          Look up implicit modules in the prebuilt module path
  -fprebuilt-module-path=<directory>
                          Specify the prebuilt module path
  -fproc-stat-report=<value>
                          Save subprocess statistics to the given file
  -fproc-stat-report<value>
                          Print subprocess statistics
  -fprofile-exclude-files=<value>
                          Instrument only functions from files where names don't match all the regexes separated by a semi-colon
  -fprofile-filter-files=<value>
                          Instrument only functions from files where names match any regex separated by a semi-colon
  -fprofile-generate=<directory>
                          Generate instrumented code to collect execution counts into <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)
  -fprofile-generate      Generate instrumented code to collect execution counts into default.profraw (overridden by LLVM_PROFILE_FILE env var)
  -fprofile-instr-generate=<file>
                          Generate instrumented code to collect execution counts into <file> (overridden by LLVM_PROFILE_FILE env var)
  -fprofile-instr-generate
                          Generate instrumented code to collect execution counts into default.profraw file (overridden by '=' form of option or LLVM_PROFILE_FILE env var)
  -fprofile-instr-use=<value>
                          Use instrumentation data for profile-guided optimization
  -fprofile-list=<value>  Filename defining the list of functions/files to instrument
  -fprofile-remapping-file=<file>
                          Use the remappings described in <file> to match the profile data against names in the program
  -fprofile-sample-accurate
                          Specifies that the sample profile is accurate
  -fprofile-sample-use=<value>
                          Enable sample-based profile guided optimizations
  -fprofile-update=<method>
                          Set update method of profile counters (atomic,prefer-atomic,single)
  -fprofile-use=<pathname>
                          Use instrumentation data for profile-guided optimization. If pathname is a directory, it reads from <pathname>/default.profdata. Otherwise, it reads from file <pathname>.
  -fprotect-parens        Determines whether the optimizer honors parentheses when floating-point expressions are evaluated
  -fpseudo-probe-for-profiling
                          Emit pseudo probes for sample profiling
  -freciprocal-math       Allow division operations to be reassociated
  -freg-struct-return     Override the default ABI to return small structs in registers
  -fregister-global-dtors-with-atexit
                          Use atexit or __cxa_atexit to register global destructors
  -frelaxed-template-template-args
                          Enable C++17 relaxed template template argument matching
  -freroll-loops          Turn on loop reroller
  -fropi                  Generate read-only position independent code (ARM only)
  -frtlib-add-rpath       Add -rpath with architecture-specific resource directory to the linker flags
  -frwpi                  Generate read-write position independent code (ARM only)
  -fsanitize-address-destructor=<value>
                          Set destructor type used in ASan instrumentation
  -fsanitize-address-field-padding=<value>
                          Level of field padding for AddressSanitizer
  -fsanitize-address-globals-dead-stripping
                          Enable linker dead stripping of globals in AddressSanitizer
  -fsanitize-address-outline-instrumentation
                          Always generate function calls for address sanitizer instrumentation
  -fsanitize-address-poison-custom-array-cookie
                          Enable poisoning array cookies when using custom operator new[] in AddressSanitizer
  -fsanitize-address-use-after-return=<mode>
                          Select the mode of detecting stack use-after-return in AddressSanitizer: never | runtime (default) | always
  -fsanitize-address-use-after-scope
                          Enable use-after-scope detection in AddressSanitizer
  -fsanitize-address-use-odr-indicator
                          Enable ODR indicator globals to avoid false ODR violation reports in partially sanitized programs at the cost of an increase in binary size
  -fsanitize-blacklist=<value>
                          Alias for -fsanitize-ignorelist=
  -fsanitize-cfi-canonical-jump-tables
                          Make the jump table addresses canonical in the symbol table
  -fsanitize-cfi-cross-dso
                          Enable control flow integrity (CFI) checks for cross-DSO calls.
  -fsanitize-cfi-icall-generalize-pointers
                          Generalize pointers in CFI indirect call type signature checks
  -fsanitize-coverage-allowlist=<value>
                          Restrict sanitizer coverage instrumentation exclusively to modules and functions that match the provided special case list, except the blocked ones
  -fsanitize-coverage-blacklist=<value>
                          Deprecated, use -fsanitize-coverage-ignorelist= instead
  -fsanitize-coverage-ignorelist=<value>
                          Disable sanitizer coverage instrumentation for modules and functions that match the provided special case list, even the allowed ones
  -fsanitize-coverage-whitelist=<value>
                          Deprecated, use -fsanitize-coverage-allowlist= instead
  -fsanitize-coverage=<value>
                          Specify the type of coverage instrumentation for Sanitizers
  -fsanitize-hwaddress-abi=<value>
                          Select the HWAddressSanitizer ABI to target (interceptor or platform, default interceptor). This option is currently unused.
  -fsanitize-hwaddress-experimental-aliasing
                          Enable aliasing mode in HWAddressSanitizer
  -fsanitize-ignorelist=<value>
                          Path to ignorelist file for sanitizers
  -fsanitize-memory-param-retval
                          Enable detection of uninitialized parameters and return values
  -fsanitize-memory-track-origins=<value>
                          Enable origins tracking in MemorySanitizer
  -fsanitize-memory-track-origins
                          Enable origins tracking in MemorySanitizer
  -fsanitize-memory-use-after-dtor
                          Enable use-after-destroy detection in MemorySanitizer
  -fsanitize-recover=<value>
                          Enable recovery for specified sanitizers
  -fsanitize-stats        Enable sanitizer statistics gathering.
  -fsanitize-system-blacklist=<value>
                          Alias for -fsanitize-system-ignorelist=
  -fsanitize-system-ignorelist=<value>
                          Path to system ignorelist file for sanitizers
  -fsanitize-thread-atomics
                          Enable atomic operations instrumentation in ThreadSanitizer (default)
  -fsanitize-thread-func-entry-exit
                          Enable function entry/exit instrumentation in ThreadSanitizer (default)
  -fsanitize-thread-memory-access
                          Enable memory access instrumentation in ThreadSanitizer (default)
  -fsanitize-trap=<value> Enable trapping for specified sanitizers
  -fsanitize-trap         Enable trapping for all sanitizers
  -fsanitize-undefined-strip-path-components=<number>
                          Strip (or keep only, if negative) a given number of path components when emitting check metadata.
  -fsanitize=<check>      Turn on runtime checks for various forms of undefined or suspicious behavior. See user manual for available checks
  -fsave-optimization-record=<format>
                          Generate an optimization record file in a specific format
  -fsave-optimization-record
                          Generate a YAML optimization record file
  -fseh-exceptions        Use SEH style exceptions
  -fshort-enums           Allocate to an enum type only as many bytes as it needs for the declared range of possible values
  -fshort-wchar           Force wchar_t to be a short unsigned int
  -fshow-overloads=<value>
                          Which overload candidates to show when overload resolution fails: best|all; defaults to all
  -fshow-skipped-includes Show skipped includes in -H output.
  -fsigned-char           char is signed
  -fsized-deallocation    Enable C++14 sized global deallocation functions
  -fsjlj-exceptions       Use SjLj style exceptions
  -fslp-vectorize         Enable the superword-level parallelism vectorization passes
  -fsplit-dwarf-inlining  Provide minimal debug info in the object/executable to facilitate online symbolication/stack traces in the absence of .dwo/.dwp files when using Split DWARF
  -fsplit-lto-unit        Enables splitting of the LTO unit
  -fsplit-machine-functions
                          Enable late function splitting using profile information (x86 ELF)
  -fsplit-stack           Use segmented stack
  -fstack-clash-protection
                          Enable stack clash protection
  -fstack-protector-all   Enable stack protectors for all functions
  -fstack-protector-strong
                          Enable stack protectors for some functions vulnerable to stack smashing. Compared to -fstack-protector, this uses a stronger heuristic that includes functions containing arrays of any size (and any type), as well as any calls to alloca or the taking of an address from a local variable
  -fstack-protector       Enable stack protectors for some functions vulnerable to stack smashing. This uses a loose heuristic which considers functions vulnerable if they contain a char (or 8bit integer) array or constant sized calls to alloca , which are of greater size than ssp-buffer-size (default: 8 bytes). All variable sized calls to alloca are considered vulnerable. A function with a stack protector has a guard value added to the stack frame that is checked on function exit. The guard value must be positioned in the stack frame such that a buffer overflow from a vulnerable variable will overwrite the guard value before overwriting the function's return address. The reference stack guard value is stored in a global variable.
  -fstack-size-section    Emit section containing metadata on function stack sizes
  -fstack-usage           Emit .su file containing information on function stack sizes
  -fstandalone-debug      Emit full debug info for all types used by the program
  -fstrict-enums          Enable optimizations based on the strict definition of an enum's value range
  -fstrict-float-cast-overflow
                          Assume that overflowing float-to-int casts are undefined (default)
  -fstrict-vtable-pointers
                          Enable optimizations based on the strict rules for overwriting polymorphic C++ objects
  -fswift-async-fp=<option>
                          Control emission of Swift async extended frame info (option: auto, always, never)
  -fsycl                  Enables SYCL kernels compilation for device
  -fsystem-module         Build this module as a system module. Only used with -emit-module
  -fthin-link-bitcode=<value>
                          Write minimized bitcode to <file> for the ThinLTO thin link only
  -fthinlto-index=<value> Perform ThinLTO importing using provided function summary index
  -ftime-report=<value>   (For new pass manager) "per-pass": one report for each pass; "per-pass-run": one report for each pass invocation
  -ftime-trace-granularity=<value>
                          Minimum time granularity (in microseconds) traced by time profiler
  -ftime-trace            Turn on time profiler. Generates JSON file based on output filename.
  -ftrap-function=<value> Issue call to specified function rather than a trap instruction
  -ftrapv-handler=<function name>
                          Specify the function to be called on overflow
  -ftrapv                 Trap on integer overflow
  -ftrigraphs             Process trigraph sequences
  -ftrivial-auto-var-init-stop-after=<value>
                          Stop initializing trivial automatic stack variables after the specified number of instances
  -ftrivial-auto-var-init=<value>
                          Initialize trivial automatic stack variables: uninitialized (default) | pattern
  -funique-basic-block-section-names
                          Use unique names for basic block sections (ELF Only)
  -funique-internal-linkage-names
                          Uniqueify Internal Linkage Symbol Names by appending the MD5 hash of the module path
  -funroll-loops          Turn on loop unroller
  -fuse-cuid=<value>      Method to generate ID's for compilation units for single source offloading languages CUDA and HIP: 'hash' (ID's generated by hashing file path and command line options) | 'random' (ID's generated as random numbers) | 'none' (disabled). Default is 'hash'. This option will be overridden by option '-cuid=[ID]' if it is specified.
  -fuse-line-directives   Use #line in preprocessed output
  -fvalidate-ast-input-files-content
                          Compute and store the hash of input files used to build an AST. Files with mismatching mtime's are considered valid if both contents is identical
  -fveclib=<value>        Use the given vector functions library
  -fvectorize             Enable the loop vectorization passes
  -fverbose-asm           Generate verbose assembly output
  -fvirtual-function-elimination
                          Enables dead virtual function elimination optimization. Requires -flto=full
  -fvisibility-dllexport=<value>
                          The visibility for dllexport definitions [-fvisibility-from-dllstorageclass]
  -fvisibility-externs-dllimport=<value>
                          The visibility for dllimport external declarations [-fvisibility-from-dllstorageclass]
  -fvisibility-externs-nodllstorageclass=<value>
                          The visibility for external declarations without an explicit DLL dllstorageclass [-fvisibility-from-dllstorageclass]
  -fvisibility-from-dllstorageclass
                          Set the visibility of symbols in the generated code from their DLL storage class
  -fvisibility-global-new-delete-hidden
                          Give global C++ operator new and delete declarations hidden visibility
  -fvisibility-inlines-hidden-static-local-var
                          When -fvisibility-inlines-hidden is enabled, static variables in inline C++ member functions will also be given hidden visibility by default
  -fvisibility-inlines-hidden
                          Give inline C++ member functions hidden visibility by default
  -fvisibility-ms-compat  Give global types 'default' visibility and global functions and variables 'hidden' visibility by default
  -fvisibility-nodllstorageclass=<value>
                          The visibility for defintiions without an explicit DLL export class [-fvisibility-from-dllstorageclass]
  -fvisibility=<value>    Set the default symbol visibility for all global declarations
  -fwasm-exceptions       Use WebAssembly style exceptions
  -fwhole-program-vtables Enables whole-program vtable optimization. Requires -flto
  -fwrapv                 Treat signed integer overflow as two's complement
  -fwritable-strings      Store string literals as writable data
  -fxl-pragma-pack        Enable IBM XL #pragma pack handling
  -fxray-always-emit-customevents
                          Always emit __xray_customevent(...) calls even if the containing function is not always instrumented
  -fxray-always-emit-typedevents
                          Always emit __xray_typedevent(...) calls even if the containing function is not always instrumented
  -fxray-always-instrument= <value>
                          DEPRECATED: Filename defining the whitelist for imbuing the 'always instrument' XRay attribute.
  -fxray-attr-list= <value>
                          Filename defining the list of functions/types for imbuing XRay attributes.
  -fxray-function-groups=<value>
                          Only instrument 1 of N groups
  -fxray-ignore-loops     Don't instrument functions with loops unless they also meet the minimum function size
  -fxray-instruction-threshold= <value>
                          Sets the minimum function size to instrument with XRay
  -fxray-instrumentation-bundle= <value>
                          Select which XRay instrumentation points to emit. Options: all, none, function-entry, function-exit, function, custom. Default is 'all'.  'function' includes both 'function-entry' and 'function-exit'.
  -fxray-instrument       Generate XRay instrumentation sleds on function entry and exit
  -fxray-link-deps        Tells clang to add the link dependencies for XRay.
  -fxray-modes= <value>   List of modes to link in by default into XRay instrumented binaries.
  -fxray-never-instrument= <value>
                          DEPRECATED: Filename defining the whitelist for imbuing the 'never instrument' XRay attribute.
  -fxray-selected-function-group=<value>
                          When using -fxray-function-groups, select which group of functions to instrument. Valid range is 0 to fxray-function-groups - 1
  -fzvector               Enable System z vector language extension
  -F <value>              Add directory to framework include search path
  --gcc-toolchain=<value> Search for GCC installation in the specified directory on targets which commonly use GCC. The directory usually contains 'lib{,32,64}/gcc{,-cross}/$triple' and 'include'. If specified, sysroot is skipped for GCC detection. Note: executables (e.g. ld) used by the compiler are not overridden by the selected GCC installation
  -gcodeview-ghash        Emit type record hashes in a .debug$H section
  -gcodeview              Generate CodeView debug information
  -gdwarf-2               Generate source-level debug information with dwarf version 2
  -gdwarf-3               Generate source-level debug information with dwarf version 3
  -gdwarf-4               Generate source-level debug information with dwarf version 4
  -gdwarf-5               Generate source-level debug information with dwarf version 5
  -gdwarf32               Enables DWARF32 format for ELF binaries, if debug information emission is enabled.
  -gdwarf64               Enables DWARF64 format for ELF binaries, if debug information emission is enabled.
  -gdwarf                 Generate source-level debug information with the default dwarf version
  -gembed-source          Embed source text in DWARF debug sections
  -gline-directives-only  Emit debug line info directives only
  -gline-tables-only      Emit debug line number tables only
  -gmodules               Generate debug info with external references to clang modules or precompiled headers